4新闻中心
边缘AI液冷设备中MOS管的紧凑型散热解决方案
文章出处:平尚科技
责任编辑:平尚科技
发表时间:2025-12-29
随着人工智能从云端向边缘侧下沉,部署在工厂车间、通信基站或移动载具中的边缘AI设备,正面临着比数据中心更为严苛的挑战:它们需要在极其有限的物理空间内,处理日益增长的计算任务,同时还要应对复杂多变、有时甚至通风不良的外部环境。为这些设备供电的核心功率器件——MOS管,其散热设计已不再是简单的“加热片”,而是决定整机能否在紧凑空间内稳定、可靠工作的关键。传统的风冷已触及天花板,而液冷技术正以其高效、静谧和可塑性强等优势,成为解决这一矛盾的必由之路,但其在边缘侧的落地,尤其强调“紧凑性”。

与服务器机房中规整的机柜不同,边缘设备的安装空间常以厘米计。一台用于工业质检的AI计算盒,其内部可能同时集成GPU、多路传感器接口和通信模块,留给电源转换单元(DC-DC或AC-DC)的PCB面积非常紧张。这就要求其中的MOS管必须具备高功率密度,即单位面积或单位体积内能处理更大的功率。此外,边缘环境可能充满粉尘、油污或存在较大温差,传统风冷风扇易失效且会吸入污染物。因此,散热方案必须是一个密闭、高效、低维护的系统。液冷,特别是冷板式或微流道液冷,因其热量通过封闭的液体循环导出,恰好能满足这些要求,但如何将其“微型化”并高效地作用于MOS管,是工程实现的核心。MOS管的“内功”与“外功”:协同降低热阻紧凑型液冷散热方案的成功,建立在MOS管自身特性与外部冷却结构的深度协同之上。首先,MOS管必须修炼“内功”,即优化其封装热阻。在边缘设备中,体积庞大的TO-220或TO-247封装往往难以容纳。取而代之的是先进的贴片封装,如DFN(双边扁平无引线)、QFN(四边扁平无引线)或更先进的DirectFET、PolarPAK 等。这类封装的共同特点是:底部拥有一个大面积裸露的金属焊盘(Exposed Thermal Pad),该焊盘直接与MOSFET的硅片相连。它不仅是电气接地点,更是主要的热量出口。这种设计将传统封装中向上的散热路径,扭转为向PCB方向的垂直向下导热,其结到焊盘的热阻(RθJC)可低至1°C/W以下,为高效导热奠定了物理基础。平尚科技提供的工业级MOS管,便采用了此类封装,其紧凑的尺寸(如5mm x 6mm)能极大节省布局空间。

其次,是“外功”的精进——构建超短、超低热阻的导热路径。紧凑型方案的核心是让冷却液无限接近MOS管的发热点。主流技术路径包括:微流道冷板直接贴合:在MOS管集中的区域,PCB采用金属基板(如铝基板),或将MOS管直接安装在一块精密加工的微型铜制或铝制冷板上。冷板内部蚀刻出宽度仅零点几毫米的微流道网络,冷却液流经时能高效带走热量。MOS管底部的裸露焊盘通过高性能导热界面材料(如导热凝胶或相变材料)与冷板表面实现近乎完美的接触,将界面热阻控制在极低水平。这种方案能将MOS管的结温到冷却液的热阻(RθJL)控制在5-10°C/W的范围内。集成式热管/均温板与液冷耦合:对于空间高度受限且热源分散的场景,可以在MOS管上方覆盖超薄热管或均温板(vapor chamber),先将局部热点热量快速横向扩散至更大面积,再通过一个集中的“液冷冷头”将热量导入液冷循环。这相当于为热量建立了“支线公交+主干线快车”的输送网络。耐腐蚀与可靠密封:边缘设备的液冷系统更小,冷却液与材料的兼容性至关重要。平尚科技在方案中会严格评估并选用与冷却液长期兼容的封装材料和导热介质,确保在设备数年的生命周期内,散热性能不会因腐蚀或材料退化而衰减。紧凑规格从参数到可靠性采用此类紧凑型液冷散热方案后,边缘AI设备中的MOS管能够实现显著的性能提升和可靠性保障。在同等功耗下,其峰值结温相比同尺寸下的优化风冷方案可降低20°C至30°C。根据半导体器件的寿命模型,结温每降低10°C,其理论寿命可延长约一倍。这意味着,在紧凑的工业网关或车载AI设备中,电源模块的寿命得以大幅延长。同时,更低的结温使得MOS管可以在更高的开关频率下工作(例如从200kHz提升至500kHz),从而允许使用更小体积的磁性和容性元件,进一步优化了整个电源系统的功率密度,形成了“散热优化-性能提升-体积缩小”的良性循环。在边缘AI这片充满活力却又空间受限的新战场上,液冷技术正从数据中心的“重型装备”演变为适应边缘需求的“精密工具”。MOS管的紧凑型散热解决方案,本质上是封装技术、热设计工程与材料科学在微观尺度上的深度协同。平尚科技凭借对工业级应用场景的深刻理解,将高效的液冷散热浓缩于方寸之间,确保每一颗为边缘算力供能的MOS管都能在冷静与高效中稳定运行,为AI在千行百业的落地应用,构筑起坚实且小巧的能源基石。